簡化嵌入式邊緣 AI 應(yīng)用開發(fā)的步驟

時(shí)間:2022-03-02

來源:

導(dǎo)語:如果嵌入式處理器供貨商沒有合適的工具和軟件,設(shè)計(jì)節(jié)能的邊緣人工智能 (AI) 系統(tǒng),同時(shí)加快上市時(shí)間可能會(huì)變得窒礙難行。

  如果嵌入式處理器供貨商沒有合適的工具和軟件,設(shè)計(jì)節(jié)能的邊緣人工智能 (AI) 系統(tǒng),同時(shí)加快上市時(shí)間可能會(huì)變得窒礙難行。挑戰(zhàn)包括選擇正確的深度學(xué)習(xí)模型、訓(xùn)練和優(yōu)化模型以實(shí)現(xiàn)性能和準(zhǔn)確度目標(biāo),以及學(xué)習(xí)用于在嵌入式邊緣處理器上部署模型的專有工具。

  從模型選擇到處理器部署,TI 提供免費(fèi)工具、軟件和服務(wù),協(xié)助完成深度神經(jīng)網(wǎng)絡(luò) (DNN) 開發(fā)工作流程的每一個(gè)步驟。逐步選擇模型、隨處訓(xùn)練模型,并無縫部署到 TI 處理器上,完全不需要任何手工制作或手動(dòng)程序設(shè)計(jì),藉以進(jìn)行軟件加速推論。

  步驟 1:選擇模型

  邊緣 AI 系統(tǒng)開發(fā)的首要任務(wù)是選擇正確的 DNN 模型,同時(shí)考慮系統(tǒng)的性能、準(zhǔn)確度和功率目標(biāo)。和 GitHub 上的 TI 邊緣 AI 模型庫等工具有助于您加速這個(gè)過程。

  這個(gè)模型庫是 TensorFlow、PyTorch 和 MXNet 框架常用開放原始碼深度學(xué)習(xí)模型的大型集合。這些模型在公共數(shù)據(jù)集上進(jìn)行預(yù)先訓(xùn)練,并經(jīng)過優(yōu)化,可在 TI 處理器上有效運(yùn)作而實(shí)現(xiàn)邊緣 AI。TI 會(huì)定期使用來自開放原始碼社群的最新模型以及 TI 設(shè)計(jì)的模型更新模型庫,提供最多樣化的性能和精準(zhǔn)的優(yōu)化模型。

  藉由模型庫中的數(shù)百個(gè)模型,TI 模型選擇工具 (如圖一所示) 可以協(xié)助快速檢視和比較推論處理量、延遲、準(zhǔn)確度和雙倍數(shù)據(jù)速率帶寬,完全不需要撰寫任何程序代碼。

  步驟 2:訓(xùn)練和調(diào)整模型

  選擇模型后,下一個(gè)步驟是訓(xùn)練或優(yōu)化模型,藉以在 TI 處理器上實(shí)現(xiàn)最佳性能和準(zhǔn)確度。運(yùn)用我們的軟件架構(gòu)和開發(fā)環(huán)境可以隨處訓(xùn)練模型。

  從 TI 模型庫中選擇模型時(shí),訓(xùn)練腳本可以根據(jù)特定任務(wù)的自定義數(shù)據(jù)集快速傳輸和訓(xùn)練模型,完全不需要從頭開始進(jìn)行長時(shí)間的訓(xùn)練或手工制作模型。對于自己的 DNN 模型,訓(xùn)練腳本、框架擴(kuò)展和量化感知訓(xùn)練工具有助于優(yōu)化模型。

  步驟 3:評估模型性能

  在開發(fā)邊緣 AI 應(yīng)用之前,需要在實(shí)際軟件上評估模型性能。

  使用 TensorFlow Lite、ONNX RunTime 或 TVM 以及 SageMaker Neo with Neo AI DLR 運(yùn)行時(shí)間引擎的最常用業(yè)界標(biāo)準(zhǔn) Python 或 C++ 應(yīng)用程序設(shè)計(jì)界面 (API),只需要幾行程序代碼,TI 的彈性軟件架構(gòu)和開發(fā)環(huán)境即可隨處訓(xùn)練自己的模型,并且編譯模型再部署到 TI 硬件。在這些業(yè)界標(biāo)準(zhǔn)運(yùn)行時(shí)間引擎的后端, TI 深度學(xué)習(xí) (TIDL) 模型編譯和運(yùn)行時(shí)間工具可以為 TI 軟件編譯模型、將編譯后的圖形或子圖形部署到深度學(xué)習(xí)軟件加速器上,并獲得優(yōu)化推論處理器的性能,完全不需要任何手動(dòng)操作。

  在編譯步驟中,訓(xùn)練后量化工具可以將浮點(diǎn)模型自動(dòng)轉(zhuǎn)換為定點(diǎn)模型。這組工具透過配置文件進(jìn)行層級混合精度量化 (8 位和 16 位),達(dá)到調(diào)整模型編譯的絕佳彈性,藉以展現(xiàn)最佳性能和準(zhǔn)確度。

  各種常用模型的操作不盡相同。TI 邊緣 AI 基準(zhǔn)檢驗(yàn)工具 也位于 GitHub 上,有助于您將 DNN 模型功能與 TI 模型庫中的模型無縫搭配,并做為自定義模型的參考。

  有兩種方法可以在 TI 處理器上評估模型性能:TDA4VM 入門套件評估模塊 (EVM) 或TI Edge AI Cloud,這是免費(fèi)的在線服務(wù),支持遠(yuǎn)程訪問 TDA4VM EVM 評估深度學(xué)習(xí)推論性能。用于不同任務(wù)和運(yùn)行時(shí)間引擎組合的多個(gè)范例腳本可以在不到五分鐘的時(shí)間內(nèi)在 TI 軟件上進(jìn)行加速推論的程序設(shè)計(jì)、部署和執(zhí)行,同時(shí)收集基準(zhǔn)。

  步驟 4:開發(fā)邊緣 AI 應(yīng)用

  使用開放原始碼 Linux 和業(yè)界標(biāo)準(zhǔn) API能夠?qū)⒛P筒渴鸬?TI 軟件上。不過,將深度學(xué)習(xí)模型部署到軟件加速器上只是其中的一部分。

  為了協(xié)助快速建構(gòu)高效率的邊緣 AI 應(yīng)用,TI 采用 GStreamer 框架。GStreamer 插件可以將計(jì)算密集型任務(wù)的端對端訊號鏈自動(dòng)加速到軟件加速器和數(shù)字訊號處理核心上。

  圖二 顯示邊緣 AI 的 Processor SDK with Linux 有關(guān)的軟件堆棧和組件。

  結(jié)論

  即使不是 AI 專家,亦可開發(fā)和部署 AI 模型或建構(gòu) AI 應(yīng)用。TI Edge AI Academy有助于在進(jìn)行測驗(yàn)的自定進(jìn)度課堂式環(huán)境中學(xué)習(xí) AI 基礎(chǔ)知識,并了解 AI 系統(tǒng)和軟件程序設(shè)計(jì)。實(shí)驗(yàn)室提供建構(gòu)「Hello, World」人工智能應(yīng)用的逐步程序代碼,而具有攝影機(jī)拍攝和顯示的端對端進(jìn)階應(yīng)用程序,可按照自己的步調(diào)成功開發(fā)人工智能應(yīng)用。


AI
中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來源:中國傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動(dòng)網(wǎng)(surachana.com)獨(dú)家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來源“中國傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號獲取更多資訊

關(guān)注中國傳動(dòng)網(wǎng)公眾號獲取更多資訊

最新新聞
查看更多資訊

娓娓工業(yè)

廣州金升陽科技有限公司

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0